IoT devices tend to operate under different conditions from those of the controlled environments of offices and factories, driving demand for a whole new set of technologies that can allow computing in those situations. Take the scenario of a military drone deployed on a tactical surveillance mission in a high-intensity combat zone. It is essential for the drone to be able to collect, process, and transmit high-quality data in real time, despite numerous challenges, including remote location, limited connectivity, and extreme environmental conditions.
To understand what effect edge computing will have, it is important to know what causes its evolution. Edge computers have an infinitely wide range of uses; however, the conditions in which they operate form the driving factors for this new field and the technologies that serve it. These are:
Varied connectivity and data mobility. Edge technologies can operate in places that might limit or require intermittent connectivity to the cloud for services like computing, storage, backup, and analytics.
Need for real-time decision making. Edge use cases often require data to be processed instantly, for self-driving cars or automatic picking machines, for example. These devices and platforms need to be able to do analytics locally, without first sending data to the cloud, so decisions can be made rapidly.
Localized compute power. Edge computers need to be lightweight devices that can make fast, secure decisions without the support of bigger computing power.
New storage and security needs. As the numbers of sensors generating data on remote and mobile devices grow, so does the need for efficient storage that can be secured in a variety of environments.
Intermittent power. Power and infrastructure variations at the edge are pushing the boundaries of performance and capabilities of edge solutions. Especially in industrial applications, edge computers need to be able to operate with a power supply that might be sporadic.
Unlike recent technological advances such as cloud computing, where most gains were captured by just a few major players in the technology sector, edge computing creates opportunities across a breadth of industries. In addition, while much of today’s technical infrastructure is sector-agnostic—the same cloud that powers an eCommerce engine also powers the workflow of a bank—edge computing technologies need to be more specialized. For example, the data storage and computing power needed for precision agriculture will be different from that needed to run mobile, durable medical appliances or safety equipment in a mine.
In our research we identified 107 edge computing use cases (Exhibit 2). These applications are not conceptual: we identified 3,000 companies deploying these use cases today to understand the potential opportunities across sectors and the technology stack. Our calculation of the value they could generate focused on hardware, but of course the opportunity extends to software too. We considered the hardware stacks (the value of the sensor, on-device firmware, storage, and processor, for example) and use cases across the edge value chain (including edge computers at different points in the architecture).
To chart each particular opportunity, we adopted an industry lens to conduct our analysis, identifying edge use cases and quantifying the potential resulting hardware value. Based on the percentage of edge use cases in each vertical, the top three verticals are:
- Travel, transportation, and logistics
- Global energy and materials
- Public sector and utilities
The benefits of past technology revolutions were concentrated in sectors with heavy tech users, such as financial services. For edge computing, sectors that have traditionally been less tech-intensive, such as energy and materials, stand to make substantial improvements in human productivity and safety from edge computing.
Given the central theme of edge computing—that a majority of the computing is done closer to where the data is being generated, and so real-time decision making can’t rely on the traditional cloud or massive on-premises data centers, the varying conditions that each use case involves drive the technology needed for it. Looking at this through the lens of specific use cases gives a sense of the range of technologies that will be needed. For example, autonomous vehicles rely on visual processing, among other technologies, and these systems have to be able to withstand rugged environments that involve variations in weather, vibration, and connectivity.
Very soon edge computers will be all around us performing distributed computing across a multitude of devices in homes and factories, on farms, and throughout public infrastructure. The forces fueling the demand for these devices and the technologies enabling them are advancing rapidly. For tech companies, the development of edge technology will revolutionize industry with solutions customized for diverse use cases. This will create a paradigm shift from the device and original equipment makers all the way through to how such products are sold, installed, and serviced. The changes that result will affect all players in the tech stack, consumers in a vast array of sectors, and any companies and leaders looking to have a role in it.
The above is a brief about how Edge computing can bring about changes in the future. Watch this space for more updates on the latest trends in Technology.